groups [O(2)—Me and O(8)—Me, respectively] used to form the link with the next monomer. The greater length of the Na—O(2) [2·371 (6) Å] and Na—O(8)[2.338 (6) Å] bonds compared with the other Na-O distances (see Table 2) reflects the poorer donor properties of methoxy groups vs P=O groups. The non-bonding O…O distances (P=O oxygen atoms) vary from 3.127 (7) to 3.239 (6) Å and demonstrate the flexibility of the tripod part of the ligand. This study indicates that L ligands alone (i.e. not combined with other donor molecules) do not favour the formation of small Na-aggregates, as found in $(NaL_{OEt})_3.2H_2O$. This obviously can be ascribed to the marked tendency of Na ions to have coordination number six or, to a lesser degree, five, a condition which can hardly be satisfied when a triangular array of Na atoms is surrounded only by ligands of the L type.

In conclusion the structure described here constitutes the first example in which a ligand of the type $[(\eta^5-C_5H_5)Co{P(O)(OR)_2}_3]^-$ acts as a pentapodal ligand. This property leads to the formation of an organometallic polymer.

WK is grateful to the DAAD for financial support.

References

- B. A. FRENZ & Associates, INC. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- KARLE, I. L. (1974). Biochemistry, 13, 2155-2162.

}<

- KLÄUI, W. (1990). Angew. Chem. Int. Ed. Engl. 29, 627-637.
- KLÄUI, W., LENDERS, B., HESSNER, B. & EVERTZ, K. (1988). Organometallics, 7, 1357–1363.
- KLÄUI, W., MÜLLER, A., EBERSPACH, W., BOESE, R. & GOLDBERG, I. (1987). J. Am. Chem. Soc. 109, 164–169.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- STOUT, G. H. & JENSEN, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1991). C47, 1617–1621

Structures of $[Nb_2Cl_6(C_4H_8S)(PEt_3)_2]$, $[Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2]$ and $[Ta_2Cl_6(C_4H_8S)(PMe_3)_2]$

BY ELIZABETH BABAIAN-KIBALA, F. ALBERT COTTON* AND MAOYU SHANG

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A&M University, College Station, TX 77843, USA

(Received 28 August 1990; accepted 29 January 1991)

Abstract. Di- μ -chloro-tetrachlorobis(tetrahydrothiophenato)(triethylphosphino)diniobium(III), [Nb2Cl4di-µ-chloro-tetrachlorobis(tetra- $(C_4H_8S)(PEt_3)_2],$ hydrofuranato)tetrahydrothiophenatodiniobium(III), $[Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2]$ and di- μ -chloro-tetrachlorobistetrahydrothiophenato(trimethylphos- $[Ta_2Cl_6(C_4H_8S)(PMe_3)_2]$ phino)ditantalum(III), crystallized in two crystal phases. These molecules are confacial bioctahedra with two bridging Cl atoms and one C_4H_8S molecule. (I) $[Nb_2Cl_6(C_4H_8S)(PEt_3)_2]$, $M_r = 723.02$, orthorhombic, $P2_12_12_1$, a = 9.512 (2), b = 14.171 (3), c = 21.948 (5) Å, V = 2958 (1) Å³, Z =4, $D_x = 1.623 \text{ g cm}^{-3}$, λ (Mo K α) = 0.71069 Å, μ = 14.7 cm^{-1} , F(000) = 1456, T = 294 K, R = 0.0471, 2153 unique observed reflections with $I > 3\sigma(I)$. The Nb-Nb distance is 2.718 (1) Å. The Nb-Cl_{bridge} distances range from 2.496 (3) to 2.530 (3) Å and Nb—S distances are 2.456 (3) and 2.461 (3) Å. The range of Nb-Cl_{terminal} distances is 2.392 (4) to 2.406 (3) Å. The Nb-P distances are 2.678 (4) and 2.675 (3) Å. (II) $[Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2], M_r =$ 630.91, monoclinic, C2/c, a = 13.367 (4), b =10.642 (4), c = 15.317 (5) Å, $\beta = 93.71^{\circ}$, V = 2174 (1) Å³, Z = 4, $D_x = 1.927$ g cm⁻³, λ (Mo K α) = $0.71069 \text{ Å}, \quad \mu = 18.5 \text{ cm}^{-1}, \quad F(000) = 1248, \quad T = 10.000 \text{ m}^{-1}$ 294 K, R = 0.0557, 1026 unique observed reflections with $I > 3\sigma(I)$. The Nb—Nb distance is 2.684 (2) Å. The Nb-Cl_{bridge} distances are 2.495 (4) and 2.497 (4) Å and the Nb—S distance is 2.401 (1) Å. The Nb-Cl_{terminal} distances are 2.372 (4) and 2.406 (3) Å. The Nb-O distance is 2.401 (4) Å. (IIIa) $[Ta_2Cl_6(C_4H_8S)(PMe_3)_2], M_r = 814.94$, triclinic, $P\overline{1}, a = 10.615$ (4), b = 12.189 (2), c = 10.529 (2) Å, α = 102.35 (2), β = 117.91 (3), γ = 87.86 (2)°, V = 1173 (1) Å³, Z = 2, $D_x = 2.307$ g cm⁻³, λ (Mo $K\alpha$) = $0.71069 \text{ Å}, \mu = 101 \text{ cm}^{-1}, F(000) = 760, T = 294 \text{ K},$ R = 0.0692, 3263 unique reflections with $I > 3\sigma(I)$, (IIIb) $[Ta_2Cl_6(C_4H_8S)(PMe_3)_2]$, triclinic, $P\overline{I}$, a = $10.412(1), b = 10.569(2), c = 23.763(6) \text{ Å}, \alpha =$ $\gamma = 64.52 (1)^{\circ}$, V =88.04 (2), B = 87.17(2).

© 1991 International Union of Crystallography

^{*} Author to whom all correspondence should be addressed.

2357.6 (9) Å³, Z = 4, $D_x = 2.296 \text{ g cm}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.71069 \text{ Å}$, $\mu = 101 \text{ cm}^{-1}$, F(000) = 1520, T = 294 K, R = 0.0692, 5549 unique observed reflections with $I > 3\sigma(I)$. For these two crystal phases the average bond distances for Ta—Ta, Ta—S, Ta— Cl_{bridge}, Ta—Cl_{terminal} and Ta—P bonds are 2.682 (3), 2.422 (6), 2.502 (13), 2.375 (9) and 2.623 (8) Å, respectively.

Introduction. In the early 1970's Mass & McCarley (1973) reported the synthesis and characterization of $M_2X_6(C_4H_8S)_3$, where M = Nb, Ta and X = Cl, Br, I. These complexes became excellent starting materials for the preparation of new Nb^{III} and Ta^{III} compounds. In the past decade a series of ligandsubstitution reactions of these dimers with bidentate phosphines has been explored. When two equivalents of bidentate phosphines, such as dmpm (Chakravarty, Cotton, Diebold, Lewis & Roth, 1986), dppm (Cotton & Roth, 1983) or depe (Cotton, Diebold & Roth, 1987) is used, the confacial bioctahedron dimers form edge sharing dimers and the phosphine ligands serve as either bridging or chelating ligands. In the presence of excess dppe the confacial bioctahedral geometry of the $Ta_2X_6(C_4H_8S)_3$ starting material is preserved (Gilletti, Young & Brown, 1989) but the product isolated is tetrameric, $Ta_2Cl_4(\mu - Cl)_2(\mu - SC_4H_8)(\mu - Ph_2PCH_2CH_2PPh_2)_2$

The structures of the confacial bioctahedral dimers reported here show that in the case of monodentate ligands the dimers preserve their original geometry.

Experimental. (I) $Nb_2Cl_6(C_4H_8S)_3$ (0.66 g, 1 mmol), PEt₃ (0.3 ml, 2 mmol), Na/Hg (1 ml, 2 M) and 35 ml toluene were stirred in a 100 ml three-neck flask for 2 h. The solution was filtered and layered with 20 ml hexane. Red, rectangular crystals of the product began to grow after one week. Crystal of dimensions $0.40 \times 0.30 \times 0.20$ mm was mounted inside a capillary. Cell constants were derived from least-squares refinement based on 25 reflections having $8 \le 2\theta \le$ 24°. Intensity data were collected at variable scan speeds $(3-30^{\circ} \text{ min}^{-1})$ dependent on a pre-scan count with a skip option, moving-crystal/moving-counter technique, $\omega - 2\theta$ scans with $4 \le 2\theta \le 50^\circ$, using a Nicolet P3F diffractometer. $h = 0 \rightarrow 12, k = 0 \rightarrow 17, l$ = $-27 \rightarrow 27$. Three standard reflections (172, 418, $\overline{521}$) revealed no decay of the crystal. Data were corrected for Lorentz and polarization effects. 2864 data collected and averaged to 2153 unique observed reflections with $I > 3\sigma(I)$, $R_{int} = 0.025$. Scattering factors were those of Structure Determination Package (Frenz, 1985). The Nb, Cl, P and S atoms were located by direct methods, SHELXS86 (Sheldrick, 1986) and the C atoms were located and refined by alternating difference Fourier maps with leastsquares cycles using SDP. The H atoms were not

included in the model and all the atoms were refined anisotropically. Final R = 0.0471 and wR = 0.0594, where $w = \sigma^2(|F_o|)^{-1}$ and S = 1.463 for 244 variables. At convergence, $(\Delta/\sigma)_{max} = 0.05$, $(\Delta\rho)_{max} =$ 0.96 and $(\Delta\rho)_{min} = -0.58$ e Å⁻³ on final difference Fourier map. Final positional and equivalent isotropic thermal parameters are listed in Table 1.*

(II) $Nb_2Cl_6(C_4H_8S)_3$ (0.66 g, 1 mmol), benzene (20 ml), C_4H_8O (20 ml) and Na/Hg (0.5 ml, 2M) were placed in a 100 ml flask, stirred for 1 h. The red solution was filtered and layered with 20 ml hexane. X-ray-quality crystals of $Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2$ grew after 2 d. A light red, regularly shaped crystal, $0.20 \times 0.05 \times 0.20$ mm, was mounted inside a capillary. Cell constants were derived from least-squares refinement based on 25 reflections having $18 \le 2\theta \le$ 23°, using a Rigaku AFC5R diffractometer. Intensity data were collected using the $2\theta - \omega$ scan technique with $4 \le 2\theta \le 50^\circ$, scan speed $8^\circ \min^{-1}$, maximum four scan repetitions. $h = 0 \rightarrow 14$, $k = 0 \rightarrow 11$, l = -17 \rightarrow 17. Three standard reflections ($\overline{2}4\overline{4}$, $\overline{2}\overline{2}6$, $\overline{3}3\overline{5}$), measured every 150 reflections, revealed no decay of the crystal. Data were corrected for Lorentz and polarization effects and absorption corrections were made based on ψ scans of six reflections near $\chi =$ 90°, using the empirical method of North, Phillips & Matthews (1968); relative $T_{min} = 0.8053$, $T_{max} = 1.0000$. 1507 data collected and averaged to 1026 unique observed reflections $[I > 3\sigma(I)]$, $R_{int} = 0.025$. Scattering factors were those of Structure Determination Package. The Nb, Cl, S and O atoms were located by direct methods (SHELXS86; Sheldrick, 1986) and the C atoms were located and refined by alternating difference Fourier maps with leastsquares cycles using SDP. The H atoms were not included in the model and all other atoms were refined anisotropically. Final R = 0.0557 and wR =0.0709, where $w = \sigma^2 (|F_0|)^{-1}$ and S = 1.402 for 105 variables. At convergence $(\Delta/\sigma)_{max} = 0.01$, $(\Delta\rho)_{max} = 1.33$ and $(\Delta\rho)_{min} = -0.62$ e Å⁻³ on final difference Fourier map. Final positional and equivalent isotropic thermal parameters are listed in Table 1.

(III) Ta₂Cl₆(C₄H₈S)(C₄H₈O)₂ (0.4 g, 0.5 mmol) (Cotton, Diebold & Roth, 1987), Na/Hg (0.6 mmol Na in 0.6 ml Hg) were stirred in a mixture of solvents (15 ml toluene and Iml C₄H₈O) for 10 h. PMe₃ (0.25 ml, 2.5 mmol) was added and the solution was stirred for 24 h. The brick-red solution was filtered into a Schlenk tube and layered with hexane (15 ml). After several days green and brown plate-like crystals of the two types of the crystal phases of

^{*} Lists of structure factors, anisotropic thermal parameters and complete intramolecular bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53968 (96 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Positional and equivalent isotropic displacement parameters $(Å^2)$

 $B_{eq} = \frac{1}{3} \sum_{i} \sum_{j} B_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}.$ v

0.54902 (7)

0-50930 (7)

0.6284 (2)

0.5499 (3) 0.3535 (3)

0.4277 (2)

0.6734 (2)

0.5069 (2)

0.4400 (2)

0.6641 (3) 0.5756 (2)

0.4630 (9)

0.3114 (8)

0.298 (1)

0.364 (1)

0.795 (1)

0.639 (1)

0.661(1)

0.844 (1)

0.700 (2)

0.573 (1)

0.533 (1)

0.7073 (9) 0.548 (1)

0.572 (1)

0.749 (1)

0.442 (1)

0.2681 (1)

0.3997 (3)

0.1840 (4)

0.1829 (4)

0.0811 (5)

0.4291 (8) 0.411 (1)

0.540 (1)

0.633 (1)

0.562(1)- 0.035(1)

-0.160(1)

0·25531 (7) 0·26676 (7)

0.2572 (4)

0.3888 (4)

0.1302 (5)

0 1033 (5)

0.4087 (5)

0.1127 (5)

0.4248 (5)

0.2281 (6)

0.2755 (5)

0.369 (2)

0.301 (2)

0.186 (3)

0.133(2)

0.075 (3)

0.295 (2)

0.273 (3)

0.164 (2)

0.404 (2)

0.268 (3)

0.64701 (8)

0.81088 (8)

0.5576 (5)

0.8601 (5)

0.8435 (5)

0.4935 (6)

0.5034 (6)

0.8023 (6)

0.8250 (6)

0.7147 (6)

1.0819 (5)

0.461 (3)

0.326 (3)

0.309 (3)

Nb₂Cl₆(THT)(PEt₃)₂

Nb(1)

Nb(2)

Cl(1)

Cl(2)

Cl(3)

Cl(4) Cl(5)

Cl(6)

S(1)

P(1)

P(2)

C(1)

C(2)

C(3) C(4)

C(11)

C(12)

C(13)

C(14) C(15)

C(16) C(21)

C(22)

C(23)

C(24) C(25)

C(26)

Nb(1) Cl(1)

Cl(2)

Cl(3)

S(İ)

O(1)

C(1)

C(2)

C(3)C(4)

C(5)

C(6)

Ta(1)

Ta(2)

S Cl(1)

Cl(2)

CI(3)

Cl(4)

Cl(5)

Cl(6)

P(1)

P(2)

C(1)

C(2)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

Ta(1*a*) Ta(2*a*)

Cl(1a)

Cl(2a)

Cl(3a)

Cl(4a)

Cl(5a)

Cl(6a)

P(1a)

P(2a)

C(1a)

C(2a)

C(3a)

S(a)

0.2203 (1)

0.2119 (1) 0.4191 (3)

0.4044 (4)

0.1633(5)

0.1802 (4)

0.1997 (3)

0.0043 (3)

0.3841 (3)

0.0722 (4) 0.0399 (3)

0.579 (Ì)

0.396 (2)

0.547 (2)

0.644 (2)

0.126 (2)

0.116 (2)

0.066(2)0.036 (2)

-0.182 (2)

0.087 (1)

0.039 (2)

-0.150 (1)

-0.010 (2)

0.174 (2)

0.43450 (9)

0.4105 (3)

0.4762 (3)

0.2709 (3)

0.3651 (8)

0.296 (1)

0.253 (1)

0.309 (1)

0.394 (2)

0.422 (1)

0.472 (1)

0.30958 (7)

0.15317 (7)

0.4105(5)

0.1160 (5)

0.0885 (5)

0.4532 (5)

0.4708 (5)

0.1364 (6)

0.1769 (6) 0.2287 (6)

-0.1221 (5)

0.548 (2) 0.652 (3)

0.653 (3)

0.496 (2)

0.210 (4)

0.348 (2)

0.051 (2)

- 0.240 (2)

- 0.202 (3)

- 0.172 (2)

0.22545 (8)

0.36053 (8)

0.4822 (5)

0.1745 (5)

0.1412 (5)

0.2224(6)

0.2715 (6)

0.4880 (6)

0.5172 (6)

- 0.0455 (6)

0.606(2)

0.709(4)

0.719 (3)

0.2697 (6)

Ta2Cl6(THT)(PMe3)2

0.200

-0.187 (2)

Nb₂Cl₆(THT)(THF)₂

Ta2Cl6(THT)(PMe3)2

-0.116(2)

z

0.34624 (5)

0.46733 (5)

0.3018(2)

0.5326 (2)

0.5037 (2)

0.2729 (2)

0.4263 (1)

0.4002 (1)

0.3966 (2)

0.2738 (2)

0.5538 (2)

0.3982 (6)

0.3798 (7)

0.3594 (8)

0.391 (1)

0.2820 (9)

0.1910 (6)

0.2786 (7)

0.3337 (7)

0.1441 (7)

0.2566 (9)

0.6305 (6) 0.5614 (6)

0.5446 (7)

0.6827 (6)

0 5828 (8)

0.5523 (8)

0.17980 (8)

0.3116 (2)

0.0434 (2)

0.1870 (3)

0.1052 (6)

0.031 (1)

0.006 (1)

0.067 (1) 0.115 (1)

0.305 (1)

0.286 (1)

0.12219 (7)

0.26359 (7)

0.3823 (5)

0.0892 (5)

0.0236 (5)

0.1085 (6)

0.1757 (5)

0.3645(6)

0.4521 (6)

0.1613 (5)

0.1714 (6)

0.533 (2)

0.641 (3)

0.579 (4)

0.457 (2)

-0.258 (3)

-0.204 (2)

- 0.275 (3)

0.018 (2)

0.118(3)

0.313 (2)

0.37275 (4)

0.38389 (4)

0.3782 (2)

0.3129(2)

0.4421 (3)

0.4472 (3)

0.2929 (3)

0.4650 (3)

0.3102 (3)

0.3597 (3)

0.3908 (3)

0.317 (1)

0.344 (1)

0.406 (1)

5.3 (7)

9(1)

9 (1)

0.250

Table	1	(cont.)
1 a U IC		(00111.)

-			•				
		x	v	z	$B_{eo}(\text{Å}^2)$		
	C(Aa)	0.588 (2)	0.436 (2)	0.436 (1)	4.3 (6)		
	C(5a)	-0.128(2)	0.622 (2)	0.405 (1)	5.6 (6)		
\mathbf{R} $(\mathbf{\hat{A}}^2)$	C(6a)	-0.078 (2)	0.670 (3)	0.288 (1)	5.4 (7)		
$D_{eq}(\Lambda)$	C(7a)	-0.173 (3)	0.896 (2)	0.370(1)	6.1 (8)		
3.46 (2)	C(8a)	0.185 (3)	1.154 (2)	0.460(1)	6·0 (7) 4.5 (9)		
3.66 (2)	C(9a)	0.138(3) 0.417(3)	1.129 (3)	0.343(1) 0.383(2)	7.7 (8)		
4.64 (7)	$T_a(1b)$	0.30619(8)	0.85846(8)	0.87509 (4)	2.62 (2)		
5.80 (8)	Ta(2b)	0.16867 (8)	0.69454 (8)	0.88227 (4)	2.67 (2)		
6.7 (1)	S(b)	0.0495 (5)	0.9472 (5)	0.8779 (2)	3.1 (1)		
5.63 (8)	Cl(1b)	0.3736 (5)	0.6505 (5)	0.8150 (2)	3.7 (1)		
4·06 (6) 4·77 (7)	Cl(2b)	0.3699 (5)	0.6570 (5)	0.9449 (2)	3·4 (1)		
4.16 (6)	Cl(3b)	0.2880(6)	1.0081 (5)	0.7967 (3)	4.2 (1)		
4.81 (8)	Cl(4b)	0.2844(0) 0.0208(6)	0.6965 (6)	0.9611(3)	4·4 (I)		
4.07 (7)	Cl(6b)	0.0340 (6)	0.6859 (6)	0.8053 (3)	4.7 (1)		
4.8 (3)	P(1b)	0-5798 (5)	0.7912 (6)	0.8650 (3)	3.7 (1)		
5-4 (3)	P(2 <i>b</i>)	0.2595 (6)	0.4214 (5)	0.8874 (3)	3.6 (1)		
6·6 (4) 8-9 (5)	C(1b)	-0.055(2)	1.045 (2)	0.816(1)	4.9 (6)		
7.6 (5)	C(2b)	-0.193(3)	1.185 (3)	0.843(1) 0.904(1)	9(1)		
6.1 (4)	C(3b)	-0.073(2)	1.063(2)	0.934(1)	4.3 (6)		
7.4 (4)	C(5b)	0.638(2)	0.894(2)	0.909 (1)	6.0 (6)		
7·2 (4)	C(6b)	0.633 (2)	0.821 (2)	0.793 (1)	4·9 (6)		
8.6 (5)	C(7b)	0.699 (2)	0.615 (3)	0.879(1)	5.9 (8)		
7.9 (5)	C(8b)	0.347 (3)	0.341 (3)	0.956 (1)	9.2 (9)		
5.0 (3)	C(96)	0.386(3)	0.320(3)	0.832(2)	6.8 (8)		
5.5 (3)	C(10b)	0.109 (3)	0.309 (2)	0.002 (1)	00(0)		
6.2 (4)							
7.1 (4)				1 53.71	.1		
7.1 (4)	Ta_2Cl_6	(C₄H ₈ S)(PN	$Ae_3)_2$ were to	ormed. Whe	en the reac-		
	tion is	carried out	in C₄H₀O.	only green	crystals are		
1.29 (2)	formed	while in	toluene on	ly brown o	rvstals are		
2.38 (2)	Tormed	, while in	tolucile on	T = C + C = C	LOVDN N		
4.08 (9)	formed	l. A green	crystal of	$Ia_2Cl_6(C_4F)$	$I_8S)(PMe_3)_2$		
3.96 (8)	(IIIa)	with the di	mensions of	0.35×0.25	$\times 0.05 \text{ mm}$		
2.6 (1)	(1114)	ounted in	a capillary	Cell con	stants were		
3.7 (2)	was m	iounted in	a capitary	. Cen cons			
5.2 (4)	derived	l from leas	st-squares re	efinement b	ased on 25		
5.2 (4)	reflection	ons having	$230 \le 2\theta \le$	40° using	a Rigaku		
6.0 (5)	AECS	D diffractor	notor Inten	ity data wa	re collected		
3.8 (3)	AFCJI		neter. mtens				
7.3 (6)	using	the $\omega - 2\theta$	scan meth	od, fixed	scan speed		
	32° mi	n ⁻¹ . max. r	epetition sca	ins of four,	data collec-		
2.27 (2)	tion ro	nao A < 2A	$< 55^{\circ} h = 0$	$\rightarrow 14 \ k = 14$	$-16 \rightarrow 16$		
$2 \cdot 2 / (2)$	tion la	lige $4 \ge 20$	$\leq 55 \cdot n = 0$	$j \to 14, \ \kappa =$	(730 731		
2.28(2) 2.4(1)	= -14	l→14. 1hr	ee standard	reflections	(420, 521,		
3.2 (1)	$\overline{521}$) re	vealed 21.3	% crystal de	cay. Data v	vere correc-		
31(1)	tod for decay. I orentz and polarization effects and						
3.9 (1)	teu for decay, Lorentz and polarization effects and						
3.7 (1)	absorption corrections were made, based on ψ scans						
4.1 (1)	of six	reflections	near $\chi = 90$)°, using th	e empirical		
3.4 (1)	method	d of North	Phillins &	Matthews (1968). rela-		
3.0 (1)	method		π 1 oc		to collected		
3.4 (5)	tive $I_{\rm m}$	$_{\rm nin} = 0.2808$	$I_{\text{max}} = 1.00$	100. 5008 da	ta conecteu		
5.5 (8)	and av	veraged to 1	3263 unique	observed r	eflections [I		
8 (1)	> 300	$D = \tilde{R} = 0$	•041 Ta [^] C	S and P	atoms were		
8(1)	- 50(1	$n_{\rm int} = 0$	041. 1a, C		VCOC (Chal		
4.9 (6)	located	i by the Pa	tterson meti	100, SHEL	x 380 (Shei-		
5.9 (8)	drick.	1986), and	the C ator	ns were rev	vealed by a		
4.4 (6)	aomhi	nation of	difference	Fourier svi	thesis and		
6.5 (8)	comon		uniterence	I Duffer Syl			
4.9 (7)	least-so	quares refir	nements. Fir	$\operatorname{nal}_{R} R = 0.06$	92 and <i>wK</i>		
	= 0.08	73. where	$w = \sigma^2(F_o)$	$)^{-1}$ and S^{\pm}	=1.622 for		
2.84 (2)	100 1	ariables	At converg	$\frac{1}{2}$	-) = 0.01		
2.65 (2)		2 20		-125 - 125	-3 on fr-1		
3.2(1)	$(\Delta \rho)_{ma}$	x = 3.28 ar	$(\Delta \rho)_{\rm min} =$	= -1.25 e A	on inal		
3.9 (1)	differe	nce Fourier	r map. Final	positional	and equiva-		
3·6 (1)	lent	sotronia +1	hermal nar	ameters an	e listed in		
4°0 (1) 5·2 (2)		sou opie u	nermai para	ameters al	e nateu III		
4.3 (1)	Table	1.					
4.5 (1)	Ab	rown crvs	tal of Ta ₂ C	$l_6(C_4H_8S)(P$	$Me_3)_2$ (IIIb)		
3-8 (1)	with +	he dimensi	ions of 0.25	$(\times 0.25 \times 0.2$	05 mm was		
3.6(1)	with t		013 01 0 33	, ~ 0 25 ^ 0	vo mm was		

IIb) was mounted in a capillary. Cell constants were derived from least-squares refinement based on 25 reflections

having $31 \le 2\theta \le 34^\circ$ using an Enraf–Nonius CAD-4 diffractometer. Intensity data were collected using the ω -2 θ scan method, variable scan speed (1.27-5.49° min⁻¹ for ω circle), data collection range 2 \leq $2\theta \leq 46^\circ, h = -11 \rightarrow 11, k = -11 \rightarrow -11, l = 0 \rightarrow 26.$ Three standard reflections $(6\overline{19}, 1\overline{69}, \overline{169})$, revealed 28.9% crystal decay. Data were corrected for decay. Lorentz and polarization effects and absorption corrections were made, based on ψ scans of seven reflections near $\chi = 90^\circ$, using the empirical method of North, Phillips & Matthews (1968); relative $T_{\min} =$ 0.4923, $T_{\text{max}} = 0.9962$. 6739 data collected and averaged to 5549 unique observed reflections $[I > 3\sigma(I)]$, $R_{\text{int}} = 0.010$. Ta, Cl, S and P atoms were located by the Patterson method, SHELXS86 (Sheldrick, 1986) and the C atoms were revealed by a combination of difference Fourier synthesis and least-squares refinements. Final R = 0.0692 and wR = 0.1088, where $w = \sigma^2 (|F_0|)^{-1}$ and S = 3.312 for 190 variables. At convergence, $(\Delta/\sigma)_{max} = 0.075$, $(\Delta\rho)_{max} = 4.65$ and $(\Delta\rho)_{min} = -1.98$ e Å⁻³ on final difference Fourier map. Final positional and equivalent isotropic thermal parameters are listed in Table 1.

Discussion. The reactions reported here were attempts to use $M_2Cl_6(C_4H_8S)_3$ as starting materials for reducing the metal centers to lower oxidation states. The products isolated, however, were not the reduced species but M^{III} complexes where the terminal C_4H_8S ligands were substituted by C_4H_8O , PMe₃, and PEt₃. Various factors seem to play a role in the reduction of $M_2Cl_6(C_4H_8S)_3$. One point which is certain is that $M_2Cl_6(C_4H_8S)_3$ dimers do not reduce to lower oxidation states in aromatic solvents. Attempts to reduce them in aromatic solvents were the routes taken when $Nb_2Cl_6(C_4H_8S)(PEt_3)_2$ and $Ta_2Cl_6(C_4H_8S)(PMe_3)_2$ were isolated. $Ta_2Cl_6(C_4H_8S)$ - $(PMe_3)_2$ was also prepared using other routes. When C_4H_8O is used to reduce $Ta_2Cl_6(C_4H_8S)_3$, green crystals of $Ta_2Cl_6(C_4H_8S)(PMe_3)_2$ are isolated. The reaction of Ta₂Cl₆(C₄H₈S)₃ with PMe₃ and Na/Hg in a mixture of C_4H_8O and aromatic solvents gives both the green and the brown crystals of Ta₂- $Cl_6(C_4H_8S)(PMe_3)_2$. When $Nb_2Cl_6(C_4H_8S)_3$ is reacted in a mixture of C_4H_8O /benzene solution, without the presence of phosphines, $Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2$ is crystallized. Although we are certain that aromatic solvents do not form a good medium for the reduction of $M_2X_6(C_4H_8S)_3$, we are unable to understand why in the presence of C_4H_8O these compounds do not reduce further since from similar reactions $[M_2X_6(C_4H_8S)_3]^2$ complexes, possessing triple bonds between the metal atoms, were prepared (Cotton, Diebold & Roth, 1987).

Figs. 1–3 show ORTEP (Johnson, 1965) drawings of $Nb_2Cl_6(C_4H_8S)(PEt_3)_2$, $Nb_2Cl_6(C_4H_8S)(C_4H_8O)_2$ and $Ta_2Cl_6(C_4H_8S)(PMe_3)_2$. Owing to the metal– metal interaction, these dimers show a distortion in M—(μ -Cl)—M and (μ -Cl)—M—(μ -Cl) angles, from the ideal 70.53 and 90°. The metal-metal distances, (μ -Cl)—M—(μ -Cl) and M—(μ -Cl)—M for

Fig. 1. An ORTEP drawing of Nb₂Cl₆(THT)(PEt₃)₂ showing the atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level. The C atoms are drawn with arbitrary radii.

Fig. 2. An *ORTEP* drawing of $Nb_2Cl_6(THT)(THF)_2$ showing the atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level. The C atoms are drawn with arbitrary radii.

Fig. 3. An *ORTEP* drawing of $Nb_2Cl_6(THT)(PMe_3)_2$ showing the atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level.

Nb₂Cl₆(C₄H₈S)(PEt₃)₂, Nb₂Cl₆(C₄H₈S)(C₄H₈O)₂ and Ta₂Cl₆(C₄H₈S)(PMe₃)₂ are 2.718(1), 2.684(2), 2.682(2) Å, 76.5(2), 78.0(1), 76.0(2), 65.6(4), 65.1(1), $64.8(3)^{\circ}$, respectively.

These studies were supported by the National Science Foundation.

References

CHAKRAVARTY, A. R., COTTON, F. A., DIEBOLD, M. P., LEWIS, D. B. & ROTH, W. J. (1986). J. Am. Chem. Soc. 108, 971-976.

COTTON, F. A., DIEBOLD, M. P. & ROTH, W. J. (1987). Inorg. Chem. 26, 4130-4133.

- COTTON, F. A., DIEBOLD, M. P. & ROTH, W. J. (1987). J. Am. Chem. Soc. 109, 5506-5144.
- COTTON, F. A. & ROTH, W. J. (1983). Inorg. Chem. 22, 3654-3656.
- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package, Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- GILLETTI, P. F., YOUNG, V. G. & BROWN, T. M. (1989). Inorg. Chem. 28, 4034–4036.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MASS, E. T. & MCCARLEY, R. E. (1973). Inorg. Chem. 12, 1096-1101.
- NORTH, A. C. T., PHILLIPS, D. C. & MATTHEWS, F. S. (1968). Acta Cryst. A24, 351–359.
- SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 1621-1624

Structure of a Monochloro Bridged Polymeric Copper(II)–Di-2-pyridylamine Complex: [Cu(dipyam)Cl(NO₃)].0.5H₂O

BY I. I. MATHEWS AND H. MANOHAR*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India

(Received 19 November 1990; accepted 24 January 1991)

Abstract. Di-2-pyridylaminechloronitratocopper(II) hemihydrate, [CuCl(NO₃)(C₁₀H₉N₃)].0·5H₂O, M_r = 341·21, monoclinic, $P2_1/a$, a = 7.382 (1), b =21·494 (4), c = 8.032 (1) Å, $\beta = 94.26$ (1)°, V =1270·9 Å³, Z = 4, $D_m = 1.78$, $D_x = 1.782$ g cm⁻³, λ (Mo $K\alpha$) = 0.7107 Å, μ (Mo $K\alpha$) = 19·47 cm⁻¹, F(000) = 688. The structure was solved by the heavyatom method and refined to a final *R* value of 0.034 for 2736 reflections collected at 294 K. The structure consists of polymeric [Cu(dipyam)Cl(NO₃)] units bridged by a chloride ion.

Introduction. Cu^{II} halides show a wide variety of stereochemical complexity (Smith, 1976; Willett & Geiser, 1984). Observed geometries include fourcoordinate, five-coordinate and six-coordinate species. Both the inherent flexibility of the Cu^{II} coordination sphere and the non-stereospecific nature of the rather large spherical halide ion play a crucial role in this respect. Further interest in the crystal chemistry of Cu^{II} halides derives from the bridging ability of the halide ions. The halide ions involved in bridge formation can either form two Cu-X bonds of normal length (a symmetrical bridge) or one normal Cu-X and one long, semicoordinate $Cu\cdots X$ bond (unsymmetrical bridge). The

Cu^{II} ions can be connected by combinations of one, two, or three such bridges.

The di-2-pyridylamine (dipyam) ligand used in this study and similar ligands (rigid or semirigid) are well known for their stabilizing effect of the five-coordinate state of Cu^{II} (Hanson & Hathaway, 1980). However, in complexes containing dipyam, the flexible nature of this ligand results in a greater variety of geometries (Fuller & Jacobson, 1981).

In this paper we report the crystal structure of an unsymmetrically bridged polymeric monochlorocopper complex containing the dipyam ligand.

Experimental. The compound was isolated as a byproduct in the synthesis of a vitamin B_6 complex. Dark green crystals were obtained on slow evaporation of a 2:1:2 mixture of dipyam, pyridoxal hydrochloride and Cu(NO₃)₂.3H₂O in a water/methanol mixture. Density was measured by flotation in a mixture of CHCl₃ and CHBr₃. A crystal of size 0.28 × 0.21 × 0.12 mm was used in the data collection on a CAD-4 diffractometer. The unit-cell parameters are based on 25 centred reflections within the θ range 12–18°. Intensity data were collected for 3400 reflections with $\omega/2\theta$ scan, $-9 \le h \le 9$, $0 \le k \le 28$, $0 \le l \le 10$, $(\sin\theta/\lambda)_{max} = 0.66 \text{ Å}^{-1}$. Variations in three standard reflections (441, 413, $4\overline{82}$) were less than 8%. The intensities were scaled by the use of these

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.